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On the out-of-equilibrium order parameter in long-range 
spin-glasses 
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Dipartimento di Fisica, Universiti di Roma I, La Sapienza. Rome, Italy 
and INFN, Sezione di Roma I, Rome, Italy 

Received 3 October 1994, in final form 5 January 1995 

Abstract. We show that the dynamical order parameten can be re-expressed in lerms of 
the distribution of the staggered auto-correlation and response functions. We calculate these 
disfributions far the out of equilibrium dynamics of the Sherrington-Kirkpatrick model at long 
times. The results suggest that the landscape this model visits at different long times in an out- 
of-equilibrium relaxation process is, in B sense, self-similar. Fulthermore, there is a similaily 
beween the landscape seen out of equilibrium at long times "d the equilibrium landscape. 

The calculation is greatly simplified by making use of the superspace noarion in the 
dynamical approach. This notation also highlights the rather mysterious formal connection 
between the dynamical and replica approaches. 

We also perform numerical simulations which show good agreement with the analytical 
results for the out of equilibrium dynamics. 

1. Introduction , 

The partition function of mean-field spin-glasses~ is dominated by many states. The 
geometrical organization of these states, their relative weights in the Gibbs-Boltzmann 
measure, and the distribution of their mutual distances have been known for some time [l, 21. 
Of particular importance is the functional order parameter P ( q )  giving the probability 
distribution of states with mutual overlap q.  

The Gibbs-Boltzmann measure can be studied analytically using a dynamical 
approach [3]. For instance, the Langevin dynamics 

(ro determines the time scale and &(t) is a Gaussian white noise with zero mean and 
variance 2), with the following order of large times and large N limits, 

lim lim 
N-rm I-m 

guarantees ergodicity and leads the system to equilibrium. The equilibrium thermodynamical 
values~ of any operator U are then obtained as averages over the noise {U)eq  ~= 
limN-rm 1imz-,- (WO). 
t Present address: Service de Physique de I'Etat Condense, CEA, Saclay, Frank. 
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A different situation, closer to the experimental settings, is to consider the relaxation of 
an infinite system at long but finite times. The time is measured from the initial time-the 
quenching time in experiments-which we take as zero. The order of limits is then 

lim lim . 
I-m N+m 

An analytical solution for mean-field spin-glasses in this regime has recently been 
developed 14-71, It was argued there that in the regime (1.3) mean-field spin-glass systems 
below the critical temperature never achieve equilibrium, not even within a restricted sector 
of phase space. This is in agreement with experimental spin-glasses, for which the estimate 
is that aging effects take a few years to die away [8l. 

A relevant order parameter for the long-time asymptotics of the relaxation is the 
dynamical pd(q) defined as follows [4]: we add time-independent source terms hi,...{, to 
the energy 

and then consider the generating functions of the generalized susceptibilities 

(1.5) 

If the symbol Lim stands for (1.2), it defines the usual Parisi order parameters x ( q )  and 
P(q) [I]. If it stands for (1.3) then (1.5) defines the dynamical parameters &(q) and 
Pd(q) 141. Here and in what follows (.) and overline denote the average with respect to the 
Langevin noise and with respect to the couplings, respectively. 

The dynamical order parameters xd(q) and Pd(q)-unlike their static counterparts-. 
have not as yet been given a probabilistic interpretation. The main purpose of this paper is 
to show that Pd(q) can be recast into a form that: 

(i) Makes its physical meaning more explicit. 
(ii) Shows for the Sherrington-Kirkpattick (SK) model that there is a self-similarity in the 

landscape. Although at all long but finite times (limit (1.3)) the system is exploring 
regions of phase space which it will eventually leave, never to return, some geometrical 
properties of these regions coincide with those of the equilibrium states. 

The Hamiltonian of the Shemngton-Kirkpatrick model is given by 

(iii) Is amenable to numerical simulations. 

(1.6) 

The interactions Jij are quenched random variables Gaussianly distributed with zero mean 
and variance l/&. The last is a spin~weight tefm and the hard-spin limit (&I) is recovered 
taking a + 00. In what follows we shall work in this limit. 

The out-of-equilibrium dynamics of the SK model have been studied in [6]. A surprising 
outcome, obtained under a set of hypotheses described there in detail, is that the dynamical 
order parameters pd(q) and &(q) coincide with the static order parameters P(q) and 
X(q)-even if the physical situations they describe are very different. The coincidence 
of dynamical and static order parameters does not hold for every model, for instance the 
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p-spin spherical model [9] behaves in a different way [4]. This difference in behaviour can 
be understood by studying the TAP landscapes of the two models [4]. 

We shall use in this paper the results of 161 to compute analytically the staggered auto- 
correlation and response functions [lo, 111 in the limit of any two large-times (limit (1.3)) 
for the SK model. All the information about the asymptotic large times solution is encoded in 
the order parameter X d ( q )  and in the ‘triangle relation’ f relating the correlation functions 
at any three long times (see [6]). We shall then compare analytical and numerical results for 
the staggered distributions. Their good agreement gives numerical support for the predicted 
equality of dynamical and static order parameters in this case. 

In order to obtain the staggered distributions from X d ( q )  (or P&)) and f we shall 
heavily use the formal relation between the static replica approach and the dynamical 
approach, which becomes transparent when the latter is formulated in terms of superspace 
variables [12,13]. (Although the underlying supersymmetry in this dynamics is partially 
broken by the ‘boundary’-initial-conditions, it still has useful consequences.) 

This proceeds in two steps: we firstly identify the dynamical-superspaceounterpacts 
of the static-replica space-variables. We obtain, roughly speaking, the same formule 
with superspace integrals-including a time integral-substituting sums over replicas. 

Secondly, we look for the solution for the dynamical order parameter. Again, this 
solution has many points in common with the solution for the statics although they are not 
equivalent for every model and describe entirely different physical situations. 

The paper is organised as follows. In section 2 we intioduce the staggered dishibutions. 
Using the SUSY formalism, we find that they are related to the powers of the dynamical 
order parameter Q(l, 2). In section 3 we compute, in general, these powers of Q(1.2) and 
then specialize to the long-time asymptotics of the SK model using the results of [6]. In 
section 4 we obtain the staggered auto-correlation function for large times. In section 5 we 
describe the numerical simulations and compare them to the analytical results. Finally, we 
discuss the physical picture in section 6. 

2. Staggered distribution functions 

The staggered auto-correlation function is defined as 

g(h; t l , tZ)  5% (uA(tl)uA(tZ)) = x ( h l i )  (hlj) (s(t l)Oj(tZ)) (2.1) 
i j  

where h denotes the eigenvalues of the N x N random matrix Jij associated with *e 
eigenvectors IA). lo@)) is the time-dependent N-dimensional vector of spins, q ( t )  E 
(ilu(t)), and u ~ ( t )  (hlu(t)) are the staggered spin states. 

The staggered response function is 

The functions g and i are in turn related to the set of time-dependent two-point functions 
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where 7 represents the mean over the quenched disorder. In terms of g and they read 

E"'(tt,tz) E dAp(A)Akg(h; t i ,  tz) (2.5) 

(2.6) 

where p(A) is the eigenvalue distribution that, in the limit of large N ,  corresponds to the 
semicircle law p ( A )  = 1/(2x) if the variance of the Jij is finite [14]. In particular, 
if tl = tz and k = 1 equation (2.5) gives the time-dependent energy density. 

2.1. Supersymmetric f o r d i s m  

Following [12] we introduce the supersymmetric 'field' &(I) ,  i = 1,. . . , N, 

s 
s &"'(tl,tz) = d A p ( A ) A k i ( h ;  t i ,  f2) 

@i (1) = + v i ( t l )  3, + el iji(tl ) + &(rl) %e, (2.7) 
with 1 (tl,el,P1). 

The dynamical expectation value of a quantity 0 can then be written as 

(OW) = J' n i ~ ~ b i l  o(tl)exp[-Sm - spm~ 

SPOT = p 1 dededt H(q5) .  

As in the static replica approach, once the mean is taken over the couplings one ends up 
with a functional of the order parameters that can be calculated by saddle-point evaluation. 
The dynamical order parameter is the 'supercomelation' function defined as 

which plays the same role as Q.,, in the statics. For the mean-field case that satisfies 
causality the saddle-point value of Q(I,2) can be written as 

Q ( ~ . ~ ) = C ( ~ ~ , ~ Z ) + ( ~ Z - B I )  [OzG(ti,tz)+@i G(tz.tdl (2.10) 

and it encodes the two-time functions C and G that are the standard auto-correlation and 
response functions 

(2.11) 

(2.12) 

respectively. Because of causality, G(t1, tz )  = 0 if tz > t l .  In these formulae we have 
omited the mean over the disorder since C and G are seIf-averaging in the limit N + 00 

forfuire times as can be easily proven by considering the evolution of two independent 
copies of the system with the same couplings Jii. 

We shall need the definition of the operator powers of Q 

Qk(l,  3) = d2 Qk-' (1.2) Q(2,3) . (2.13) s 
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It~is easy to see that @ conserves the form (2.10) with C(') and G @ )  given inductively by 

C"'(t1, t3)  = 1 dtz [CCk-"(ti, tz) G(r3, tz) + G'*-"(t~, tz) C(tz, t))]  (2.14) 

&'(ti, t3 )  = dtz G*-"(ti, t2)  G(tz,t3) (2.15) 

where ti > 4 .  From now on supra-indices within parenthesis denote entries in the function 
Qk while supra-indices without parentheses denote ordinary powers. 

2.2. Staggered auto-correlation and response functions 

We now start the computation of the staggered auto-correlations and responses. With the 
superspace notation most of the manipulations of [ll] carry through without change, just 
substituting replica indices by superspace variables. The quantities (2.1) and (2.2) can be 
encoded in a function of superspace variables 

1 

= E'k'(tl, 22) + (e, -el) [e2 b"'(t,, t2) + 01 , P ( t , ,  ti)] 

where '((.))' denotes mean with the measure (2.8). 
Correspondingly, the staggered distributions can be encoded as 

g(h;1,2)-g(h;ti,tz)f(82--81) [ 0 z 0 ( h ; t i , t 2 ) + 0 i 0 ( h ; t z , t i ) ]  

We shall use a related set of order parameterst 

(2.16) 

(2.17) 

(2.18) 

where &(z) = zf=, Sk,, zr are the Chebyshev polynomials of the second kind, generated 
by 

(2.19) 

In components, X@)(l, 2) reads 

X"'(L2) X " ' ( ~ , , t 2 ) + ( ~ ~ - ~ l ) [ 0 , ~ " ' C ~ ( t , , t , ) + 0 1  R"'(t,,t,)]. (2.20) 

Following exactly the same steps as in [l l] ,  one gets 

i.e. each component XG) and 2(k) is the coefficient of the expansion of g and 0 in the 
POlyIIOmidS sk. 

One can now show [ l l ]  that the X(k)  are obtained from 

X(')(l, 2) = fly Q'" (1,2) (2.22) 

t The functions Xcx) ( I .  2) me the dynnmicnl analogue of the functions Xk of [Ill. 
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or disentagling the superspace notation 

(2.23) 

(2.24) 

We are left with the task of calculating the powers of the superorder parameter Q. 
Before dealing with this, let us give a compact form for g; using (2.19) and the orthogonality 
properties of the Chebyshev polynomials we obtain 

(2.75) g(A; 1,2) = [Q(6 - PAQ +B2Qz)-i](L 2). 
products and inverses are as in (2.13) and the identity is defined as 

a(l - 2) (0, -el)(& - &)S(t, - t l )  . 
The relation (2.25) is valid for all times. It is purely a conkequence of the mean-field 
h i t  and the (super)symmetries of the problem; we have not yet used at all the dynamical 
solution. 

In the following sections we shall concentrate on the long-time regime (1.3). We shall 
express the results not in terms of the times, but in terms of the value of the auto-correlation 
function takes at those times. 

3. Powers of Q 

We now calculate the powers Qk for large times. Until explicitly noted, our calculation 
is not particular to the SK model but only relies on the assumptions made in [6] for the 
long-time dynamics of mean-field spin-glasses. 

For any three large times the auto-conelations satisfy 'triangle relations': 

C(tmax. tad = f (C( tm,  tint). C(tinrz Grin)) . (3.1) 
The function f is an associative composition law. 

We also have that 

(3.2) 

Equation (3.2) defines XdC] and F[Cl  (the latter up to a constant). It says that the 
violation of the RIT theorem for the non-equilibrium dynamics of spin-glasses is determined 
by a function xd[c] that depends on the times exclusively through C(t l ,  tz ) .  

This scenario has been proposed to analyse the large-time dynamics of the mean-field 
spin-glass models. The solution of the dynamical problem for a paiiicular model gives 
explicit expressions for Xa, F and f [4,6]. 

In the appendices we shall show that the structure (3.1) and (3.2) carries through to Qk.  
The reasoning is general and does not depend on the model. The main steps are the 
following: we first show that depends on the times only through C(tl ,  tz ) :  

C(L)(tl, t2)  = C'k'[C(t*, tz)] . 

c(cytm&, tmi.)) = f(C(C("(t-, ti"3). C(C(%i"C, f m i d )  

(3.3) 
The triangle relation for C" can be read from 

(3.4) 
i.e. the new triangle relation is isomorphic to the old one. 
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Relation (3.2) then maps into 

In the appendices we also show for the SK model that Xf' is obtained through 

xp(c")[cl) = X,[C] . (3.6) 

Of particular importance are the values of the correlations C = a; that are 'fixed points' 
of f 

f (a;, a;) =a:. (3.7) 

Equation (3.4) implies that fixed points corresponding to C are mapped into fixed points 
corresponding to C". 

The fixed points separate the range of auto-correlations in 'discrete scales' [6]. Under 
very general (model-independent) assumptions, the relation f between two fixed points is 
ultrametrical 

(3.8) 
but not so the relation between values of the antc-correlation that are not fixed points and 
belong to the same discrete scale. 

In general, it turns out that the function C(K) (C) ,  when evaluated in the fixed points U: is 
related to the ultrametric ansatz in replica space as follows: let Qcb be an ultrametric matrix 
with elements 4, associated with blocks of sizes X,. We compute the matrix power [&'].b. 

and consider its elements (say, 4p)) associated with blocks of size X,. Then, the functional 
q")[q] coincides with the dynamical functional C(k)[C]. 

This relationship (at this point purely kinematical) between powers of static and 
dynamical order parameters holds only for 'fixed point' values of C. The values of q that 
are not contained as entries of the ultrametric matrix correspond to values of C intermediate 
between fixed points, i.e. within discrete scalest; for these auto-correlation values there is 
no replica counteput within the ultrametric ansatz. 

f (a:, a;) = min(af, a;) 

3.1. SK model 

For the SK problem in zero magnetic field$, the solution of the mean-field dynamical 
equations yields a dense set of fixed points of f (C, C) in the interval [ 0 , 4 ~ ] ,  plus an 
isolated fixed point C ( t ,  f) = I. The value @A is the Edwards-Anderson parameter, 
and the interval (qm, 11 corresponds to the 'FDT ' (discrete) scale. For times associated 
with auto-correlations in this interval Xd(C) = l'and FDT holds. Instead, for large times 
associated to C in [0, qEA], FDT is modified as in (3.2) by a non-trivial factor Xa[C]. The 
function Xd[C] is part of the solution to the mean-field equations of motion. 

To obtain the explicit form of the powers QK it is useful to separate the FDT discrete 
scale writing Q(I, 2) as 

Q(1,2) = QFOT(~.  2) + Q(l,2).  (3.9) 

t Let us note, in passing, that the compondence we have just described is an example of a more general 
c o n n d o n  between static replica and dynamic SUSY treatments. Indeed this connection holds not only for powers 
of the order parameters, but for a wide class of functionals H[Q1 1131. 
$ This solution has been obtained for T slightly below lhe critical temperature T,. We expect it to hold for all 
temperatures below Tc. 



1838 A Baldassarri er al 

The FDT term Qm(l, 2) has entries that satisfy 

CFDT(f1, t2) = CFDT(t1 - tZ) (3.10) 

(3.11) 

The function CFDT(T), T G 4 -tz, is a rapidly (with respect to the variation of Q) decreasing 
function; Cm~(0) = 1 - qEA,  and C,T(OO) = 0. It is the output of the Sompolinsky- 
Zippelius dynamics 'within a valley' [3]. Operator powers of Q m  have enfxies that verify 
(3.10) and (3.11) and are relevant in the same time region. 

The Q function varies slowly; C ( f l ,  t l )  = qm and C(t1, tf) = 0 if f I  >> ff. 

In the operator product QFDT Q, the operator Q m  acts as the identity 6(1 - 2) times 

The separation (3.9) is the dynamic counterpart of the separation of the (static) replica 

12.6 (1 - qEA)&b f &ob (3.12) 

I - qFA r121. 

matrix &b. 

where 8 o b  has q u  in the diagonal. 
In order to compute X ( k )  we use that, for long times, 

= Q{DT(~. 3) + ((1 - 4 E A ) 6  + e)' (133) - ((1 - qFd6)'((1,3). (3.13) 

This relation allows us to write {C"), G"}, the entries of Qk, in terms of IC&, G g T )  
and (C('), &')], the entries of QLT and Q', respectively. 

In appendix A we give expressions for the entries CgT and GgT of QkDT. The explicit 
form of C$T( t~ ,  f2) has no analogue in the ultrametric ansatz for the replica approach, except 
for the values at equal times and at times such that C = qeA (i.e. at the limits of the FDT 
'discrete' scale). C& is also a rapidly decreasing function which falls from (1 - qmEk at 
equal times to zero at widely separated times. In appendix B we calculate the entries 
and of Qk for large times. 

Using these results we are in a position to express C") and G" for all ranges of times: 

For large and widely separated times fl and rz such that C(tl ,  tz )  < qEA, we compute 
the sum in (3.13) to get, in terms of C(tl, rz), 

and 

(3.15) 

(3.16) 

(3.17) 

with CV)(qEA) from (3.14). 
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In particular we shall need the result for equal times 

C ' Y t , ,  tl) = (1 - qEay + C"'(qL). (3.18) 

4. Expressions for the staggered auto-correlation 

Expressions (3.17) and (3.18): together with (3.14) and (3.15), are all that is needed to 
calculate the staggered auto-correlation and response functions at long times. In order to 
make contact with the results of [Ill we make a change of variables: 

= F[O1- F[C(Xd)l@(XW - xd) (4.1) 
F[01 f qKA (4.2) 

where Xnp = Xd[q&]. 
Inverting equation (2.21). using (2.19) and the low-temperature phase result 

,9(1 -I) = 1, after some algebra we obtain the staggered auto-correlation at long equal 
times 

g(h) = lim lim g(h, t ,  t )  
1-m N - r m  

The staggered auto-correlation g(h, C), between two large and widely separated times il. tz 
chosen such that C(t1, t z )  = C < qKA, is given by 

Both these last expressions are valid for the low-temperature phase. 
We now note that for  the SK model the functions xd(c)  for the dynamics and the 

usual function X(q) of the replica treatment coincide at all temperatures. Furthermore, the 
diagonal values Qi,, and C")(t,,  tl) also coincide. This also implies the equality of the 
functions A and I .  

Hence, we have just proved that for the long and equal times the dynamic staggered 
spin auto-correlation (4.3) coincides with the static one obtained in [I 11. Furthermore, 
the staggered auto-correlation g&C) coincides with the static onet computed with 
configurations belonging to two equilibrium states with mutual overlap C. 

Finally, ~ let us show that, both statically and dynamically, g(h )  contains all the 
information needed to reconstruct Po(q) .  To this end we define 

(4.5) 

and 

h(h) = /9 (2 - b ) g ( h )  - 1 .  (4.6) 
t One can extend the equilibrium calculation of [ I l l  to this case by considering the envy of the replicn "ices 
(1 - phQ f p2Q2)-I.b corresponding to a pair of replicas having mutual overlnp Qo,, = C. 
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The functions t ( X )  and q ( X )  both have a plateau for the same values of X E (Xu, 1). 
Equation (4.3) becomes 

Having excluded the plateau in t(X), we can change variables in the integral to obtain 

where t~ E ~ ( X M )  and p ( t )  = ( t  - 2)X-'(t)dX/dt. 
The determination of 

p( t ) ,  XM, t~ can, in principle, be done in a unique way: the analytical continuation of 
h(A) from the interval -2 < A 2 yields the 'charge density' f i ( t ) ,  the magnitude of the 
'discrete charge' and its position t ~ .  

This is an electrostatic problem with positive charges. 

The howledge of p( t ) ,  X M ,  tM then allows us to calculate X ( t )  as 

(4.9) 

Hence, we have shown that g(A) contains all the information needed to obtain X ( q ) .  

5. Numerical simulations 

We have performed Monte Carlo simulation of the dynamics of a system with N = 996 
spins at temperature T = 0.3. 

We have calculated the distribution of overlaps for two copies of the system relaxing 
from different initial confisrations, at times t = 600, 2000 and 10000 Monte Carlo 
sweeps. At these times the system is well out of equilibrium, as shown by the form of 
the overlap distribution. This eventually takes the form of the static P ( q )  (except for 
finitesize corrections) at equilibrium, but is only bell-shaped at the times considered (see 
figure 1). 

Figure 2 shows the equal-times staggered auto-correlation times the density of 
eigenvalues, p ( h ) g ( A ,  t ,  t ) .  at times t = 600, 2000 and 10000, together with the analytical 
result for the equilibrium p(A)g(A).  We notice that the convergence to a curve that coincides 
with the equilibrium curve is very fast, even in a situation manifestly out of equilibrium (cf 
figure 1). 

2.5 

1 

1.5 

1 

0.6 

Figure 1. Overlap distributions for f = 600, 2000 and 10000 
. I  -0.8 -0.6 -0.4 -0.2 0 0.2 0.1 0.0 0.8 1 Monte Carlo sweeps. The broken curve shows the analytical 

0 

Overlop equilibrium P(q). 
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1 

0.8 

0.G 

d4 t, t ) P ( X )  
0.4 Figure 2. The equal-times staggered auto- 

correlation disuibution g(X t. t )  times the 
density of eigenvalues p@). for t = 600 
(0). f = 2000 (+) and f = 10000 (0) 
Monte Carlo sweeps. The full curye 

.2 ., .o.5 0.5 ~ I 1.5 2 s h o w s t h e a n ~ ~ i ~ l r e a u l t f o r ~ e s ~ ~  
and for long but finite times. 

0.2 

0 

A 

In particular, the time-dependent energy density is given by 

e ( t )  = d h h p ( h ) g ( A ; t , t ) .  (5.1) s 
Hence, the equivalence lim,,,g(h; t ,  t )  = g(h )  ensnres the equivalence of the asymptotic 
energy and the equilibrium energy, a result that we have also checked numerically. 

Let us conclude this section by mentioning that a detailed analysis of the finite-size 
effects on the off-equilibrium dynamics of the SK model shows that the typical time at 
which the (saddle-point) mean-field equations do not hold anymore grows algebraically 
with the system size N [16]. 

6. Discussion 

The partition function of the SK model is dominated by the low-lying states. The out- 
of-equilibrium dynamics never reaches any of these states: there is never a situation of 
‘effective’ dynamical equilibrium in which the system is trapped forever in one of these states 
ignoring the rest of the phase space and satisfying FDT and timetranslational invariance. 

Indeed, as time passes, the evolution of the system slows down more and more but 
it is never completely trapped. In 161 it was pointed out that the equality Pd(q) = P ( q )  
implied that an infinite SK system has an energy density which goes asymptotically to the 
equilibrium energy density. Furthermore, the ‘width’ of the region in which the system has 
a fast relaxation at long times coincides with the ‘size’ qm of the equilibrium states. 

This already points to a similarity between the long-time landscape and the (different) 
region that dominates the partition function. The results in this paper suggest that this 
similarity is much deeper: consider the relaxation at two large times (rl, rz). Because of 
weak ergodicity breaking [15], given tl we can always choose tz > tl such that the auto- 
correlation C(tz, 4) between the configurations ui ( t i )  and U&) at those times is any given 
value C. If we now compute the staggered auto-correlation distribution g(h,  t i ,  t 2 )  for those 
configurations we obtain the same distribution we  would have obtained with configurations 
chosen from two equilibrium states at mutual distance C. 

This result is quite surprising, since we know that the system is not in m y  equilibrium 
state at time tl or tz, however long; it will eventually leave the neighbourhood of U&) and 
u&) never to return. 

If we now keep the configuration at times t2 and let the system evolve up to a time 
t3 such that again C(t2, f3) = C we obtain the same form for the staggered autocorrelation 
g(h, tz, 23). Note however, that because the system slows down, tz  -cl < r3 - cz if C < qEA. 
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The picture that this seems to suggest is that the geometry of phase space seen at 
different long times is similar in ever4 respect, except that the relevant barriers found at 
larger times are higher, thus slowing down the system. 

We expect that this similarity between the equilibrium and the long-time out-of- 
equilibrium regions of phase space will hold for models that do not have a ‘threshold‘ 
level below which the system cannot go. More precisely, we expect this similarity to hold 
for all models with a continuous set of correlation scales, e.g. the SK model and the model 
studied in [5,7], but we do not expect it hold for the p-spin spherical model. The latter 
model relaxes to a threshold energy density higher than equilibrium, a result that can be 
intrepreted by the use of the TAP equations [41. The region of phase space which the system 
explores at long-times is in the p-spin case completely different from the equilibrium one. 

The results we have presented for the SK model do not hold for strictly zero temperature. 
In that case the system can remain trapped forever in a high-lying metastable state (with 
barriers not necessarily divergent with N). Furthermore, the result in that case depends on 
the particular dynamics proposed [17,18]. 

Finally, let us remark that the good agreement between the numerical calculation of 
g(A, 2, 2) for large t and the static g(A) constitues a rather detailed test of the solution of 
the out-of-equilibrium dynamics for this model [19,17]. 

Appendix A. 

In this appendix we give an expression €or Qhp Let us first note that the power of a FDT 
supersymmetric operator is itself FDT [12]. From equation (2.14) we then have 

(-4.1) 
Beacause the time difference t i  - t3 is in a one-to-one relation with Cm(zl - r 3 ) .  
equation (A.l) proves (3.3) for the FDT regime. 

The value of G&(tl - 23) is obtained as 

This says that X:’ = 1 for C in the FDT regime, and hence is of the form (3.5). 

by putting t3 = tl in (AA). In this way we obtain 
In this paper we only need the value of C&(tl, t l )  = CgT(0). This is easily obtained 

C&(tl,fI) =[CFDT(tl7fl)lk=(1 -&A)’. (A.3) 
From equation (A.l) it is easy to see that QgT is also small for very different times. 

Appendix B. 

In this appendix we analyse the properties of QK for long and widely separated times, for 
which Q = €2 though Q‘ # Qk. We first study Qk and then the properties for Q’ will 
follow from linearity (see equation (3.13)). 

We analyse C(”, Xf’ and F‘”. We first demonstrate by induction that C(k+l)  depends 
exclusively on C 

(B.1) c(k+’)(rl, z2) = c(k+l)(c(tl, rz)) . 
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Then we show also by induction that the relation between Ga+') and C(?') maintains the 
form (3.5); there exist F@+') and Xikt') that verify 

Finally we explicitly compute C@), XT) and in terms of C for the SK model. The F(k) 
are defined up to a constant, we fix it by imposing F")(C(tl, rl)) = 0 (e.g. for k = 1, 
F(qEA) = 0). 

Let us define the (rather badly behaved) 'inverse' o f f  

Cam, tan) = f (c(rm. tint). C(tinr9 tmin)) S- C(ti.t, tsd = 7(c(rmm, tint). 

(B.3) 
The function 7 is written in such a way that its second argument is always smaller than the 
first one. 

t d )  . 

We start by assuming 
@(t1, rz )  = c(k)(c(rl, e)) (B.4) 

with F(k)[C(k)(t l ,  rl)] = 0. Equation (2.14) then reads 

(B16) 

where C C(t1, t3 ) .  

Vk .  In these cases reads 
It is easy to see that, for all 7 such that T ( x ,  y )  ~G y ,  C(t1,O) = 0 =+ C(')(rl, 0) = 0, 

This is a time-reparametrization invariant equality and 
through C. 

depends on rI and f 3  only 

We now demonskate that (B.2) holds Vk. Equation (2.15) implies 

Then, we can identify 

choosing the integration constant to be zero. Now, using C*)(tl, h) = C*)(C(rl, fz)), 
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The RHS only depends on C and then FCk+')(tl. t 3 )  = F("I1)[C*+I1)] and Xg'( t1 ,  t 3 )  = 

The derivation up to this point is general-it only depends on the assumptions of [6]. 
For the SK model C(tl, 0) = 0 for long enough time tl and the ultrametric dynamical relation 
between autcxorrelation functions 

(B. 11) 

Xf+1'[C"+I']. 

~~ 
- 
f ( x ,  Y) = m i n k  Y )  = Y 

holds [6]. Then C(k)(tl,  0) = 0, Vk and 

C"+')(C) = - 1 dy (ac;? - F[y] + F(k)[c '"(y)])  . (B.12) 

We can also solve (B.lO) using the ulwamettic relation (B.11). We obtain 

F"'[C'k)(C)] = -(-F[Cl)k (B.13) 

We now solve (B.12) for C@+'). Its derivative WRT C is 

Using (B.13) we get the recursive equation 
@+I) = w") + 1 

with ( -F[~I ) ' - '  ac(k)(c)/ac. The solution is 

We now obtain X!'[C(~)(C)] in terms of xd[c]. Differentiating (B.13) WRT c 

(B.15) 

(B.16) 

m.17) 

(B.18) 

and inserting the result in (13.16) we obtain 

X~'[C'k'(C)l = X&]. (B.19) 
= Cck)(C) and (B.19) for the powers Qk. Since these 

hold for every power k and C" is a linear combination of these powers (see equation (3.13)) 
we have proved equation (3.3) and (3.6). 

We have obtained these results 
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